вторник, 28 июля 2009 г.

Перевод АНГ-РУС. Инженерно-технические работы

Assembly Methods

A variety of assembly techniques are available, to suit site conditions, and/or size or shape of the structure. Maintaining the design shape must be a key objective during plate assembly.

There are four basic methods by which structural plate structures can be assembled:

1) Plate-by-Plate Assembly - The majority of SPCSP structures are assembled directly on the prepared bedding in a single plate-by-plate erection sequence, commencing with the invert, then the sides, and finally, the top. This method is suitable for any size of SPCSP structure.

Initially, structures should be assembled with as few bolts as possible. The curved surface of the nut is always placed against the plate. Three or four untightened bolts near the center of each plate, along longitudinal and circumferential seams, are sufficient. This procedure gives maximum flexibility until all plates are fitted into place.

After part of the structure has been assembled into shape by partial bolting, the remaining bolts can be inserted and hand tightened. Always work from the center of a seam toward the plate corner. Alignment of bolt holes is easiest when bolts are loose.

After all the bolts are in place, tighten the nuts progressively and uniformly, starting at one end of the structure. The operation should be repeated to be sure all bolts are tight.

If the plates are well aligned, the torque applied with a power wrench need not be excessive. A good fit of the plates is preferable to the use of high torque. Bolts should not be overtightened. The bolts should be torqued to a minimum of 200 N.m and a maximum of 340 N.m.

It is important that the initial torquing be done properly. In many structures, nuts may be on the outside, and retorquing would not be possible after backfill.

In some applications, such as for pedestrian and animal underpasses, it is specified that all bolt heads should be on the inside of the structure, for safety and visual uniformity. If a paved or gravelled invert is to be placed, it may be allowable to have the bolt ends protruding into the area to be covered.

After backfilling, the structure relaxes and the actual in-service bolt torque will decrease slightly. Depending on plate and structure movements, some bolts may tighten, and some may loosen or vary over time. The degree of change in torque values is a function of metal thickness, plate match, and change of structure shape during backfilling. This is normal and not a cause for concern, should checks be made at a later stage.

2) Component Sub-Assembly -This is the pre-assembly of components of a ring, away from the bedding. The components are usually comprised of the bottom plates, the side plates and the crown plates. This method is suitable for most soil-steel bridge installations. Component sub-assembly is often more efficient than the plate-byplate method. Its main advantage is that it permits simultaneous progress at two different locations at the structure site. The foundation preparation and bedding operation can be carried out at the same time as the sub-assembly operation.

A step-by-step erection sequence using this technique is illustrated in the sketches in Figure 7.5. Two different types of mobile crane equipment are shown to indicate that either one would be satisfactory.

Placing the invert components on prepared shaped bedding poses a problem with bolt insertion and torquing for large radius inverts (i.e. pipe-arch or horizontal ellipse in particular). Bolts can be preplaced by the use of spring clips. Other methods, such as the use of magnets or access trenches, may be used. Experienced assemblers often place and tighten the bolts prior to bottom plate placement, as long as this does not affect the placement of side and top plates. During component assembly of larger SPCSP structures, it is important to maintain curvature against the flattening due to torquing and self weight of the plate sections. The invert component should be sized to the proper radius and chord length, (Figure 7.5, Step 2) before the side assemblies are started. This can be controlled by horizontal sizing cables. As the side components are bolted in place, these cables should be moved to the springline. Similarly, the sides should be held to the design shape, to effect top closure (Figure 7.5, Step 3). When design shape is maintained during erection, the top subassembly should literally drop into place.

Figure 7.5 Typical component sub-assembly erection sequence for soil-steel structures: Step 1 - excavation for bedding; Step 2 - bedding and bottom sub-assembly (lift capacity and reach capability should be determined prior to equipment selection); Step 3 - erection of side sub-assembly; Step 4 - closure with top sub-assembly; Step 5 - back-filling and deformation control; Step 6 completion of engineered backfill.

The sizing cables should be left in place until all the bolts are torqued and the cables slacken as a result of backfilling. It is important that design shape and size be maintained throughout the backfill operation, with allowances for normal movement arising from backfill pressures. On large soil-steel structures, all struts or supports, if used, should be removed when the backfill reaches the 2 and 10 o'clock positions.

The bolts in plate assembly components are all fully tightened prior to placement. This means that loose-bolting until the full ring is completed, is not possible. Therefore, it becomes much more important that exact design shape be maintained during erection, and that the component bolting be carefully aligned before torquing.

Shape checks should be carried out during and after erection to be certain that the erected shape is within design tolerances. If not, the necessary corrections must be carried out as before or backfill proceeds.

Additional bolt tightening may be required on large structures. Corner bolts control position, and the balance of the nuts are torqued to mid-range (approx. 270 N.m). Once the structure is completed, and correct alignment of plates is assured, another pass may be made to fully torque to not more than 340 N.m, before the next ring assembly is completed.

Cabling for shape control of horizontal ellipse long-span.

3) Pre-Assembly of Rings - In this method, circumferential rings of round structures are assembled off-site. These rings, or cans, are then transported to the assembly site for connection along their circumferential seams. A special technique is used to lap the end corrugations of one ring with those of its adjoining ring, to provide continuity in the assembly.

4) Complete Pre-Assembly - Pre-assembly of the complete structure can be done either at the factory or at the jobsite. The factory pre-assembled method is used for relatively small span installations; this application being limited by shipping size. The field pre-assembly method is selected for structures to be lifted intact or to be skidded onto a prepared foundation and bedding. Pre-assembly techniques are essential for installation under submerged bedding conditions.

Методы сборки

Существует ряд технологий сборки, учитывающих специфические условия на строительной площадке и/или размер или форму конструкции. Сохранение расчетной формы является главной целью в процессе монтажа сборных металлических гофрированных конструкций (СМГК).

Существуют четыре основных метода сборки СМГК:

5) Посекционная сборка. Большинство СМГК собираются непосредственно на подготовленной подушке посредством единоразовой последовательной укладки плит, начиная с нижней части, затем стороны и верхняя часть. Этот метод подходит для СМГК всех размеров.

Изначально конструкции необходимо собирать с минимальным использованием болтов. Изогнутая поверхность гайки всегда находится у секции. Достаточно трех или четырех незатянутых болтов возле центра каждой секции, вдоль продольных и поясных швов. Это позволяет добиваться максимальной гибкости до тех пор, пока все секции не будут поставлены на место.

После того как часть конструкции была смонтирована при помощи частичного болтового крепления, можно ввести оставшиеся болты и затянуть их вручную. Необходимо всегда производить эту операцию в направлении от центра шва к углу секции. Совмещение отверстий под болт легче всего осуществить, когда болты ослаблены.

Когда все болты находятся на своем месте, равномерно и постепенно затяните гайки, начиная с одного конца конструкции. Операцию необходимо повторить, чтобы убедиться, что все болты затянуты.

Для того чтобы секции были хорошо подогнаны, болты не должны быть чрезмерно затянуты. Хорошая подгонка секций предпочтительнее высокого крутящего момента.. Болты должны быть затянуть как минимум на 200 Н/м и максимум - на 340 Н/м .

Важно, чтобы первоначальная затяжка была произведена надлежащим образом. На многих конструкциях гайки должны быть на внешней стороне и подтяжка невозможна после засыпки.

В некоторых случаях, например при возведении подземных переходов для пешеходов и животных, необходимо указать, что все головки болтов должны находиться с внутренней стороны конструкции, для безопасности и визуальной однородности. Если необходимо установить мощеное или покрытое гравием основание, допускается выдавание концов болтов в область, которая впоследствии будет закрыта.

После обратной засыпки напряжение в конструкции уменьшается и затяжка болтов также ослабевает. В зависимости от движений секции и конструкции некоторые болты могут затянуться, некоторые – наоборот, ослабнуть, также их положение может варьироваться с течением времени. Степень изменения величин затяжки зависит от толщины металла, совмещенности секций и изменения формы конструкции в процессе обратной засыпки. Это нормальное явление, выявление подобных изменений при проверке на более поздней стадии не является причиной для беспокойства.

6) Предварительная сборка узлов. Это предварительная сборка узлов кольца не на подушке. Узлы обычно состоят из нижних, боковых и верхних секций. Этот метод подходит для установки большинства СМГК. Предварительная сборка узлов часто более эффективна чем посекционный монтаж. Ее основное преимущество состоит в том, что она позволяет одновременно работать на двух разных участках площадки, на которой собирается конструкция. Подготовка грунтового основания и подушки может осуществляться одновременно с предварительной сборкой.

Пошаговая последовательность возведения с использованием этой технологии проиллюстрирована с помощью чертежей на Рис. 7.5. Здесь изображены два разных вида самоходных кранов, т.к. любой из них подходит для выполнения этого вида работ.

При помещении узлов нижней части конструкции на подготовленную подушку возникает проблема с введением и затяжкой болтов, если нижняя часть имеет большой радиус (т.е. если нижняя часть представляет собой конструкцию с плоским дном (пешеходный или транспортный тоннель) или эллипс пониженной высотности). Болты можно предварительно закрепить с помощью пружинных клемм. Можно также применять другие методы, такие как использование магнитов или соединительных замков. Опытные монтажники часто вводят и затягивают болты до установки нижней секции, если это не препятствует установке боковых и верхней секций. Во время установки деталей более крупных СМГК важно предотвратить выравнивание изгиба, вызванное затяжкой и собственным весом секций . Узел нижней части должен соответствовать радиусу и длине хорды (Рис. 7.5, Шаг 2) еще до начала сборки боковых секций. Это можно проконтролировать с помощью горизонтальных измерительных шнуров. После того как боковые узлы были закреплены на своем месте с помощью болтов, шнуры необходимо поместить на линию натяжки. Аналогично, стороны должны соответствовать расчетной форме, для того чтобы можно было осуществить состыковку с верхней частью (Рис 7.5, Шаг 3). Если расчетная форма соблюдается в процессе возведения, предварительно собранный узел верхней части конструкции должен успешно состыковаться со сторонами.

Рисунок 7.5 Стандартная последовательность предварительной сборки узлов для СМГК: Шаг 1 – выемка грунта для подготовки подушки; Шаг 2 – предварительная сборка подушки и нижней части (перед выбором оборудования необходимо определить его подъемную производительность и досягаемость); Шаг 3 – монтаж предварительно собранных сторон; Шаг 4 –состыковка с предварительно собранной верхней частью; Шаг 5 – проверка обратной засыпки и наличия деформаций; Шаг 6 завершение обратной засыпки.

Измерительные шнуры должны оставаться на линии натяжки до тех пор, пока все болты не будут затянуты и натяжение шнуров не ослабнет под действием обратной засыпки. Важно, чтобы в процессе обратной засыпки расчетная форма и размер не превышали допустимого смещения, вызванного давлением, возникающим вследствие обратной засыпки. На больших СМГК , при засыпке 75% до верха конструкции подпорки необходимо убрать.

Все болты в узлах СМГК должны быть полностью затянуты до присоединения узлов к конструкции. Это означает, что болты не должны быть ослаблены до тех пор, пока кольцо не будет завершено. Таким образом, возрастает важность соблюдения точной расчетной формы в процессе возведения, а также тщательного совмещения болтового соединения деталей до затяжки.

Проверки формы должны проводиться во время и после возведения для того чтобы удостовериться, что полученная форма находится в пределах расчетного допуска. При нарушении пределов расчетного допуска необходимо внести соответствующие поправки, либо продолжить обратную засыпку.

Дополнительная затяжка болтов может потребоваться на больших конструкциях. Положение угловых болтов и симметрия гаек средние (около 270 Н/м). Когда конструкция завершена и секции совмещены надлежащим образом, можно произвести еще одну затяжку не более чем на 340 Н/м прежде чем начинать монтаж следующего кольца.

Использование шнура для контроля формы эллипса пониженной высотности.

7) Предварительная сборка колец. В этом методе окружающие кольца круглых конструкций собираются не на площадке. Эти кольца, или оболочки, затем транспортируются на сборочную площадку для последующего соединения по кольцевым швам. Особая технология используется для того, чтобы соединить внахлестку конечные гофры кольца с конечными гофрами примыкающего кольца для обеспечения целостности монтажа.

8) Полная предварительная сборка. Предварительная сборка всей конструкции может быть произведена на фабрике или на строительной площадке. Метод предварительной сборки на фабрике используется для установки конструкций с относительно малой высотностью. Его применение ограничено допустимым объемом перевозок. Метод предварительной сборки на строительной площадке используется для конструкций, которые поднимаются целиком или транспортируются на передвижных грузовых платформах и помещаются на подготовленных основании и подушке. Метод предварительной сборки может применяться при установке на подушку без отвода воды.





понедельник, 27 июля 2009 г.

Перевод лекции РУС-АНГ. Медицина

Thermal Injuries

Physical properties of napalm. Napalm is a sticky mass, usually brown (colour depends on composition), lighter than water, that is why it can burn on its surface. During burning napalm rarefies, acquires fluidity and continues burning, gets into warlike equipment, refuges and houses through apertures. It sticks well to various walls, equipment, body surface. It burns for 3-5 minutes. Flame temperature reaches 1100-1200C. During burning there is a thick cloud of black smoke with release of much carbon oxide which causes intoxication.

Characteristics of burns caused by napalm. In 95% of burns these are mostly stage 3 and 4 burns. Open parts of the body, head, face, neck and bones are mostly affected. These burns are accompanied by severe forms of shock, it appears even in case of limited injuries (up to 10% of cutaneous covering) and if burn surface is 11-20% it happens in 84% of injured. In these cases severe forms of shock are caused by combination of psychic trauma with burn and quick development of toxemia. In about an hour after appearance of burn intoxicational effects caused by napalm develop: weakness, tachycardia, muscular adynamia, etc. burns caused by napalm are associated with high mortality, including death in the battlefield. Specific local changes in the region of napalm burn are: quick swelling and blisters near regions of primary necrosis of tissues. Burn injuries are often complicated by purulence, development of lymphangitis, lymphadenitis, thrombophlebitis. Cicatrization takes a long time, post-burn scars are characterized by massiveness, are keloid in their nature, are prone to ulcerations, deform the face, development of joint contracture.

Stages of burns:

Stage 1. Erythema.

Stage 2. Blisters.

Stage 3. Necrosis of dermal superficial layers.

Stage 3b. Necrosis of all dermal layers

Stage 4. Necrosis of skin and all subcutaneous tissues.

Stage 5. Establishment of depth and area of burn at RMS

Diagnostics of burn depth is based on anamnesis data, examination of burn injury and some diagnostic tests.

1. Anamnesis. Investigation of conditions of trauma, of character of the injurer. When it is steam or hot liquid burns are superficial, if it is flame burns are deep.

2. Colour of wound. In case of superficial burn wound is pink, if burn is deep colour is grey, buff, black.

3. When burn surface is damp burn is superficial, when surface is dry burn is deep.

4. Change of colour and pain reactions. If a finger is pressed against wound surface and it becomes white and the patient feels pain then burn is superficial. If colour does not change and tactile and painful sensation are absent then burn is deep.

Methods of establishment of area of burn:

1. Nine Rule (after Wallace). According to this rule area of cutaneous covering consists of: head and neck – 9% of body surface, chest – 9, abdomen – 9, back – 9, loin and buttocks – 9, each hand – 9, each hip – 9, each shin and foot – 9, perineum and genitals 1%.

Перевод статьи Медицина укр-анг

DEPENDENCE OF DISORDERS OF ENERGY METABOLISM OF THE MYOCARDIUM ON THE LEVEL OF MATRIX METALLOPROTEINASE IN PATIENTS WITH METABOLIC SYNDROME

O.M. Kovalyova, Ye.O. Bolokadze

Kharkiv National Medical University

50 patients with metabolic syndrome and 20 practically healthy people were been examined. They underwent anthropometry and echocardiography. Plasma levels of proform of matrix metalloproteinase-1, insulin, glucose, MB-isoenzyme of creatine phosphokinase, pyruvate, lactate and lipid spectrum have been established. Close positive correlations between plasma levels of proMMP-1 and indices of energy metabolism have been established in patients with metabolic syndrome. Matrix metalloproteinase influences not only the condition of extracellular matrix but also the efficiency of different elements of energy-supply of the myocardium in patients with metabolic syndrome

Key words: matrix metalloproteinase, energy metabolism, remodeling of the myocardium of the left ventricle, extracellular matrix, metabolic syndrome.

For many years processes of energy-supply of the myocardium in different pathological conditions have been the subject of significant scientific discussions. It is known that myocardial contractility directly depends on the energy of phosphate bindings represented by adenosine triphosphate (ATP) and phosphocreatine (PC) [1-4]. For a long time PC has been considered a so-called energy buffer used in case of increase of muscular exercise. It was assumed that creatine phosphokinase (CPK) reactions were equilibrious to cytoplasmic ATP and intracellular energy transport was a passive diffusion of ATP from mitochondria till the place of its use in myofibrillas and in membranous ATP reactions [2,3]. During further study of CPK system its most active role in muscular cells due to heterogenic distribution of different CPK isoenzymes was discovered. In the myocardium about 30-40% of general CPK activity is localized in mitochondria, 40-50% - in cytoplasm and approximately 20% is related to myofibrillas, membrane of sarcoplasmic reticulum and sarcolemmatic cell membrane. In mitochondria CPK is localized on the outer side of the internal membrane and in presence of creatine it synthesizes PC from mitochondrial ATP [4]. It was supposed and later proved with physiological tests that there was close connection between CPK system and adenine nucleotide translocase due to which end product of mitochondrial reactions of energy generation in presence of kreatine was PC, not ATP which, after diffusion in myoplasm, was used by CPK isoenzymes in myofibrillas and on cellular and subcellular non-mitochondrial membranes for regeneration of ATP from ADP. In myocardial cells not the whole ATP cell reserve but only its part, localized near active centres of the corresponding ATP phases, is available for emergency usage in reactions of contractility and ion transportation. This local ATP fund directly depends on CPK and can constantly regenerate thanks to PC due to connection between ATP and CPK reactions in all cellular structures where processes of ATP energy utilization take place. It is necessary to point out that mechanisms of CPK functioning in cytosol and mitochondria are different. In cytoplasm, where soluble CPK is located, there is excess of CPK relatively to the speed of glycolysis and it functions in semi-uniform condition. In homogeneous environment CPK reaction is sensitive to PC inhibition. Thanks to specific localization of CPK and close functional association with ATP-ADP translocase, direct CPK reaction in mitochondria is accelerated due to predominant use of mitochondrial ATP. Hereby CPK can function at the speed close to maximum, at low ATP concentration in the environment. This association enables lower degree of inhibition of PC creatine kinase.

Перевод: Автореферат Диссертации

ABSTRACT

Oliynyk A.O. Prognosis, diagnosis and treatment of pelvic injuries during labor. – Manuscript.

Candidate`s thesis in medical science, specialty 14.01.21. – Orthopedics and traumatology. - Kharkiv national medical university, MOH of Ukraine, Kharkiv, 2009.

The thesis is dedicated to the scientifically and practically actual problem of improving results of treatment of patients with obstetric traumas of the pelvis on the basis of the research of risk factors and establishment of prognostic criteria.

It was established that obstetric traumas of the pelvis often trigger the mechanism of development of functional disorders of the locomotor apparatus, impairing the state of the reproductive and nervous systems in women after the labor and decreasing the quality of life.

Conditions of development of complications in women with normal pelviometric parameters during labor accompanied by disorders of hormonal regulation of the reproductive function, chronic urogenital infections, systemic endocrinopathies, posttraumatic changes in pelvic joints and presence of large fetus were explored.

Qualitative and quantitative pecularities of microbiocenosis in women with urethrovesical inflammatory diseases which relapse during pregnancy and labor were studied.

The model of risk factors and pathogenic mechanisms of their development was proposed. The author established the informativity of ultrasound symphysiometry for monitoring the condition of the pubic symphysis during pregnancy, labor and in postnatal period.

The valid classification of obstetric traumas of the pelvis, scheme of early detection of the obstetric pelvic traumas with the use of the dynamic ultrasound symphysiometry, MR-tomographic criteria of pelvic joint injuries were developed and biomechanically grounded.

Efficacy of the developed and introduced orthesics with thermoplastic materials in fresh and old obstetric traumas of the pelvis was proved, as well as its advantages if compared to universally accepted methods.

Key words: obstetric trauma of the pelvis, prognosis, diagnosis, thermoplastic orthesics.

ir

Перевод Трудовой Книжки укр-анг

Acquainted with RECORDS in work record card: January 15, 1979>

work record card

Name *************

First name **********

Patronymic name ************

Year of birth 1938

Education HIGHER

Profession GEOLOGICAL ENGINEER

______________________

Date started: February 6, 1968

Work Data:

No.

Date

Employed / Discharged, Promoted/Demoted, Reasons

Record Basis (document, date and No.)

Year

Month

Date





Career pattern before entering the university: 1(one) year 7 (seven) months 21 (twenty-one) days

Kharkiv State University named after A.M.Gorky>

Cert. URING

issued December 25, 1967

1

1967

December

26

Employed as assistant of administrative pro-rector

Order No. 1609

December 27, 1967

2

1969

March

16

Transferred to the position of senior engineer of labour agreement

Order No. 196

March 18, 1969

3

1970

October

20

Transferred to the position of senior engineer of student dormitory

Order No. 948k

October 19,1970

4

1970

December

08

Transferred to the position of senior laboratory assistant of department of geology and mineral exploration

Order No. 1113

December 7, 1970

8

1998

September

07

Transferred to the position of administrative assistant of rector

Order No. 143-k

September 1, 1998

9

1999

October

11

Permitted to combine position of head of supply department

Order No. 164k

October 6, 1999

10

2000

January

16

Discharged from the position of head of supply department

Order No. 12k

January 18, 2000

11





Order No. 99 September 30, 2002>

12




PHEE KhUH ‘PUA’ has been changed to the form of PLC KhUH ‘PUA’ since March 5, 2003

Order No. 12

March 11, 2003

13




PLC KhUH ‘PUA’ has been changed to PHEE KhUH ‘PUA’ since July 7, 2005

Order No. 166

July 12, 2005

Перевод: Учебный план

PRACTICAL CLASSES

п/п

Topic of the practical class

Academic hours

1

Introduction to medical cosmetology

1

2

Skin as the object of cosmetic influence

2

3

Modern methods of treatment in medical cosmetology. Cosmetic devices, manual and hardware-based methods

3

4

Modern methods of treatment in medical cosmetology. Injection methods, dermatosurgical and surgical methods

2

5

Skin ageing

2

6

Dyschromia

2

7

Sensitive skin. Dry skin. Erythrocuperosis

2

8

Scars. Strias

2

9

Pathology of sebaceous glands. Seborrhea. Acne rosacea. Perioral dermatitis

2

10

Acne: etiopathogenesis, classification, clinics, differential diagnostics, correction in cosmetic clinics. Postacne.

2

11

Pathology of hair. Pathology connected with abundant hair loss.

2

12

Pathology of hair. Pathology connected with abundant hair growth.

2

13

Cellulitis.

2

14

Complications in cosmetology and their prevention.

2

15

Final module assessment

2


Total

30

TYPES OF STUDENTS` INDIVIDUAL WORK (SIW) AND ITS CONTROL

п/п

Topic

Academic hours

Type of control

1

Preparation for practical classes: theoretical preparation and accomplishment of subject tests and situational tasks

13

Current control in practical classes

2

Preparation for the final module assessment

2

Final module assessment

16

Rational application of cosmetic methods in clinical practice


Defence of a report


Total

15


DISTRIBUTION OF POINTS ASSIGNED TO STUDENTS

According to the order

Module 1 (current academic activity)

Number of points

1.

Content module 1. Topic 1,2

Topic 3,4

10-16

10-16

2.

Content module 2. Topic 5,6

Topic 7,8

10-16

10-16

3.

Content module 1. Topic 9,10

Topic 11,12

10-16

10-16

4.

Content module 1. Topic 13,14

10-16


Defence of a report

0-8

Total number of points in SIW content modules

70-120

Final module assessment which also includes:

50-80

Practical preparation


Theoretical preparation


TOTAL number of points

120-200

Note:

Maximum number of points for student`s current academic activity: 120.

Student is allowed to take final module assessment if curriculum requirements have been observed and if he has the minimum of 70 points for the current academic activity.

Student passes final module assessment if he has sufficient practical skills and his test assessment was graded the minimum of 50 points.

7. LIST OF QUESTIONS FOR STUDENTS` PREPARATION FOR THE FINAL MODULE ASSESSMENT

Content module 1. Medical cosmetology

1. Aim and tasks, objects and methods of medical cosmetology, modern classification of cosmetology.

2. Main establishments of cosmetic line, their characteristics, volume of aid. Specific features of cosmetologist`s and patient`s interaction.

3. Anatomy and physiology of skin and its derivatives. Skin as the object of cosmetic influence. Skin barrier.

4. Appliances for diagnosing skin`s and its derivatives` condition. Types of skin.

5. Medicated cosmetics in clinical practice: forms, range.

6. Manual treatment appliances in medical cosmetology: compresses, masks, cosmetic face peeling, cosmetic kinds of massage.

7. Peelings: classification, general caracteristics, indications, contraindications.

8. Algotherapy, treatment with clay, peloidotherapy, thalassotherapy, hydrotherapy in cosmetology. SPA-therapy

9. Depilation and epilation: definition, classification, indications and contraindications.

10. Hardware-based methods of treatment in medical cosmetology: classification, characteristics, general indications and contraindications.

11. Phototherapy in cosmetology: classification, characteristics, indications and contraindications. Thermotherapy in medical cosmetology: classification, indications and contraindications.

12. Injection methods of treatment in medical cosmetology: general characteristics.

13. Mesotherapy: method characteristics, types of mesotherapy, indications and contraindications, range of preparations for mesotherapy.

14. Botulinum toxin injections: method characteristics, indications and contraindications, range of botulinum toxin preparations in medical cosmetology.

15. Contour plastics: method characteristics, indications and contraindications, range of preparations.

16. Dermatosurgical methods in medical cosmetology: general characteristics.

17. Electrocoagulation, cryodestruction, selective photothermolysis: method characteristics, indications and contraindications.

18. Laser smoothing, reinforcement, radiowave lifting,: method characteristics, indications, contraindications.

19. Surgical methods in medical cosmetology: general characteristics.

20. Blepharoplastics, rhinoplastics, otoplastics, circular face lifting: methods characteristics, indications, contraindications.

21. Liposuction, mammoplastics, abdominoplastics, ballooning: method characteristics, indications, contraindications.

Content module 2. Medical cosmetology in clinical practice. Cosmetic skin drawbacks.

1. Skin ageing: etiopathogenesis, main ageing theories, classification, clinics, types, of face skin ageing, types of wrinkles.

2. Chronobiological ageing, photo ageing, hormonal ageing. Differential diagnosis of skin ageing.

3. Appliances for treatment of skin ageing in cosmetic establishments.

4. Skin dyschromia: etiopathogenesis, classification.

5. Classification and clinics of hypermelanosis.

6. Classification and clinics of hypomelanosis.

7. Differential diagnosis of dyschromia

8. Correction of dyschromia in cosmetic establishments.

9. Sensitive skin: etiopathogenesis, classification, clinics, differential diagnosis, correction in cosmetic establishments.

10. Dry skin: etiopathogenesis, classification, clinics, differential diagnostics, correction in cosmetic establishments.

11. Erythrocuperosis: etiopathogenesis, classification, clinics, differential diagnosis, correction in cosmetic establishments.

12. Cosmetic and surgical scars.

13. Scars: etiopathogenesis, classification, clinics, differential diagnosis, correction in cosmetic establishments.

14. Strias: etiopathogenesis, classification, clinics, differential diagnosis, correction in cosmetic establishments.

Content module 3. Medical cosmetology in clinical practice. Cosmetic drawbacks of skin derivatives.

1. Seborrhea: etiopathogenesis, classification, clinics, differential diagnosis, correction in cosmetic establishments.